A Solid Dioxygen Derivative of Phthalocyaninatoiron (II)

INES COLLAMATI

Laboratorio di Teoria e Struttura Elettronica, CN.R., Via Montorio Roman0 36, 00121 Rome, Italy **Received February 20,1979**

When phthalocyaninatoiron(II), 'FePc', reacts with O_2 in conc. H_2SO_4 ^{*} there is a reversible addition of dioxygen, followed by an irreversible oxidation of the species formed [1]. The final product obtained is phthalimide, which can be isolated by precipitation with water.

In a kinetic study of the reaction [2], the composition S-PcFe-O₂-FeP_c-S (S = HSO₄) was assigned to the spectroscopically reversible species. More recently, we observed that FePc also reversibly interacts with O_2 in dimethylsulphoxide (DMSO) [3]. However, the spectroscopically reversible oxygenated species is unstable; the reaction solution readily discolours and a precipitate forms. We now report characterisation of this solid and its identification as $PcFe-O₂-FePc$, a species similar to that often suggested to be an intermediate in the oxidation of Fe-porphyrins, but which has never been isolated $[4]$.

When $O₂$ is bubbled into a solution of FePc in DMSO under N_2 , the spectrum typical of a bisadduct, PcFe(DMSO)₂ (λ_{max} 653 nm) [5] changes to give one with λ_{max} 625 nm, with formation of isosbestic points (Fig. 1A). Although the process is reversible, this reversibility critically depends on the temperature and the concentration of PcFe [3].

The absorption band generally decreases in intensity and a readily isolable precipitate, 'S', forms when $O₂$ -bubbling is carried out in a hot, concentrated solution of PcFe.

By way of contrast, when PcFe is coordinated to dimethylformamide (DMF), sterically hindered Nbases (e.g. α -picoline, ' α -pic', 2-methylimidazole, '2.Meim') or highly volatile bases *(eg.* n-propylamine), interaction with $O₂$ does not lead to formation of a new species in solution. Only the precipitate 'S' is obtained. The same compounds (i.e. 'S'), mixed with α -PcFe, is given when H_2O is added to a solution of PcFe in conc. H_2SO_4 in air.

Whatever the method of preparation, 'S' does not contain solvent molecules. That it indeed contains dioxygen is proven by the fact that a solution of 'S' in conc. H_2SO_4 (under N_2) gives the same absorption spectrum as the reversible oxygen species formed in this solvent (i.e. SPcFeO,FePcS) reported previously $[1, 2]$. Further N₂-bubbling into this solution leads to the spectrum of PcFe. The formula $PeFe-O_2-FePc$ for S deduced from this behaviour in H_2SO_4 was confirmed by elemental analysis: calcd. for $C_{64}H_{32}N_{16}Fe_2O_2$, C 65.77, H 2.77, N 19.17, O 2.75; found, C 65.8, H 2.8, N 19.2,O 2.6 (these results are an average of several analyses). The i.r. spectrum has medium-intensity bands at 820, 840, and 890 cm $^{-1}$, not present in α - and β -PcFe. Several other bands in the spectrum (characteristic of PcFe) show small shifts to lower frequencies.

A variable-temperature magnetic moment determination showed that the compound is strongly antiferromagnetic, μ = 2.0 BM at r.t., 0.6 BM at 30 K.

 $PcFe-O₂FePc$ does not coordinate weak bases such as DMSO (which explains the instability of the reversible oxygen species when the reaction PcFe + $O₂$ is carried out in this base), DMF, α -pic, and 2.MeIm. When shaken with these bases (or solutions of them) it slowly turns green in colour and an absorption spectrum of a bis-adduct is obtained, i.e. the Fe $-₀$ -Fe bond is broken.

By way of contrast, $PeFe-O_2$ -FePc readily coordinates strong bases (e.g. py, γ -pic, Im) to give blue solutions having spectra with $\lambda_{\text{max}} \approx 625$ nm, which then turn green in colour ($\lambda_{\text{max}} \approx 655$ nm), *i.e.* the bis-adducts are given quantitatively $[5, 6]$ (Fig. 1B). These adducts are readily isolated from solutions. The blue solutions become more stable on successive dilution with an inert solvent. Thus, evaporation of solvent from a 0.5% solution of n-propylamine in benzene gives unaltered (X-ray powder diagram, i.r.) $PcFe-O₂FePc.$

Although the $Fe-O₂-Fe$ bond is unstable in solution, PcFe $-O_2$ -FePc appears to be quite stable in the solid state up to 250° C (t.g.a.).

Under some preparative conditions, the interaction PcFe $+ O_2$ in solution led (irreproducibly) to a solid 'B', which appears to be a crystalline modification of $PcFe-O₂-FePc$. Thus, 'B' had the same composition as $PeFe-O₂-FePe$ (chemical analysis) and the same spectra in H₂SO₄ and solutions of bases (ϵ_{623} about the same for 'B' and 'S' in 0.5% solutions of npropylamine in benzene). However, there are marked differences between the two compounds in the solid state. The i.r. spectrum of 'B' has no bands in the region 800-1000 cm^{-1} , assignable to dioxygen [7]; the spectrum is identical to that of α -FePc. The X-ray powder diagrams of B and α -FePc are also identical.

^{*}In this medium FePc is implicitly assumed to be tetraprotonated (see refs. 1).

 F_1 and F_2 in degassed (N,)DMSO (c = 1.1 \times 10⁻⁴ mol dm⁻³, 1 mm cell, $T = 20\degree C$) a); b) after bubbling in 02 for 30 min; c) as for b), 90 min; d) after bubbling in Na for *ca.* 24 h. B. PcFe+FePc in py (c = 4.0 X lo-' mol dmm3, I m_{cell} ; a) 30 min after mixing; b) ca. 34 h after mixing.

References

- 1 I. Collamati, C. Ercolani and G. Rossi, *Inorg. Nucl. Chem. Lett., 12,* 799 (1976). 2 C. Ercolani, G. Rossi and F. Monacelli, Znorg. *Chem.,* in
- press. 5 3 Concentration ranges and temperatures required for rever-
- \sim situation ranges and temperatures required for rever First distribute in the kinetic study (c. Electricity, F. Monacelli and G. Rossi, private communication). (1974).
4 J. E. Baldwin and J. Huff, *J. Am. Chem. Soc.*, 95, 5757 7 L. Vask:
-

(1973); J. P. Colhnan, R. R. Gagne, T. R. Halbert, J. C. Mardion and C. C. Reed, *ibid., p. 7868; I. A. Cohen and W. S.* Caughey, *Biochem., 7,636 (1968).* J. G. Jones and M. V. Twigg, *Znorg. C&em., 8, 2120*

- *(1969).* J. G. Jones and M. V. Twigg, *Znorg. chim. Acta, 10, 103*
- $074)$
- L. Vaska, *Accts. Chem. Res., 9, 175* (1976).